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INTRODUCTION

The major constraints of spiral wound membarne elements application are represented
mainly by the fouling phenomenon leading to high concentration polarization and loss
of pressure. Their performance can be improved by reducing these constraints which are

primary linked to feed spacers design, membrane properties and operating conditions.

The role of the feed spacer is not only to keep membrane sheets separated but also
to generate feed flow unsteadiness/turbulence that aid in reducing the concentration
polarization and thus resulting in higher permeate production. Conversely, itis also known
that although the feed spacers can enhance the permeate production, it also elevates the
pressure drop along the module due mainly to obstructing the flow in the feed channel,
thereby increasing the water production cost. Several studies have also reported that
the feed spacers promote biofilm growth close to spacer strands before spreading over

the rest of the membrane area.

This short workshop focuses on development of novel spacer designs aiming to enhance
the water flux and reduce the pressure drop in these kinds of modules by different means.

Experimental and simulations results of a specific case study will be presented.

WORKSHOP OBIJECTIVES

e Lean about fundamentals of feed spacers and their role in enhancing the membrane
filtration performance (hydrodynamics, concentration polarization)
e Learn about novel techniques and advanced equipment of spacer manufacturing, and

membrane fouling monitoring and control
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WORKSHOP CONTENT

e Types of membrane fouling

e Feed spacers

e Case study: Proposed novel spacer design

e Experimental data and numerical validation

e The use of advanced equipment (3-D printing, OCT)

e Performance evaluation

WORKSHOP LANGUAGE

English

WHO SHOULD ATTEND

This workshop is suitable for technicians, operators, engineers, and researchers from

academia and industry.

ABOUT WORKSHOP INSTRUCTOR

Noreddine Ghaffour is a professor at the Water Desalination & Reuse Center (WDRC) at
King Abdullah University of Science and Technology (KAUST).
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Water Desalination & Reuse Center

(WDRC)
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Three flagship themes:

Greener Desalination

less energy, chemicals, discharge

Water Security

sufficient & safe for all

Waste to Resource

recovery of water, nutrients, minerals and energy
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Trends in desalination cost
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Basic components of spiral wound

modules

Centre tube

Brine seal

Anti - telescoping device
Membrane
Permeate-spacer (Tricot)
Feed/brine-spacer

Special glue

First Osmosis Membrane - 1964
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Spiral wound modules

/“’"““"‘ SPIRAL WOUND MEMBRANE

e caen - CONSTRUCTION SEQUENCE

g / PERMEATE
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Details with Animation 7

Spiral wound modules

Glue 3 sides

spacer

2 membrane sheets
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Spiral wound modules

Permeate collector

2

Feed spacer\
POONK

\
( glue f Permeate spacer\ Membrane

Spiral wound modules
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Unrolled spiral wound modules and

water circulation
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TFC membrane structure (SEM)

PA membrane surface Polymeric support Fabric backing

Fundamentals of deposition

Scale and Fouling are an accumulation of

deposits on the surface of the membrane

SCALING - hard mineral deposits including
calcium carbonate, calcium sulfate, barium
sulfate, and silica

FOULING - organic in nature includes silt, clay,

colloidal and suspended matter, metal oxides,

biological growth, manganese, and aluminum
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Types of fouling

» Fouling - Surface deposition of material present in feed water (inorganic and
organic)

v' TSS - silt, clay, and other suspended solids
Bacteria, algae

Organics

Colloids

Metal oxides of iron, manganese, and aluminum

AN NI NN

v Sulphides, sulphur
» Common in surface water supplies
> Bacteria stick to the membrane surface and form a biofilm

e Water Desalination
T WDR and Reuse Center

Concentration polarization

Concentration polarization is:

Pressure ‘

Concentrate

. . C trati
Accumulation of salts (ions) at the _5‘_ , — - 3:;?.‘,;:.;?."
membrane surface. v l

Membrane CE. = Csurfaee Sl

bulk

This phenomenon results from:

Permeate

>  water flow through a

Boundary Permeate
membrane (high pressure) Layer (low pressure)
>  salts (ions) are I
rejected

Feed Flow Coie=
> retained salts (ions) I

accumulate at the

membrane surface 38 \WDRC 1 pstin

and Reuse Center
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Concentration polarization

» The higher the permeate flow (Q,) in an element, the higher the
transport of salts (ions) to the membrane surface.

> As a result accumulation will be higher and
Concentration Polarization will be higher

> The higher the cross flow along the membrane surface the
higher the back diffusion

> As a result accumulation will be reduced and
concentration polarization will be lower

Membrane autopsies
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Membrane autopsies

Feed spacers

» Generate feed flow unsteadiness-
turbulence that aid in reducing CP

» Enhance flux but elevates AP

» Can promote biofilm growth

Permante 15
ermeate
How -/~

envelope

Permeata
cpacer

e alile Feed inlet

Feed outlet

Permeate inlet s Membesie Permeate outlet

side sheet

20
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Feed spacers & fouling

New spacer o 28 >S5 5
(=3 [=)
o o o .
D S
o o o %o o o
o SBXo  o% ° o9
Iwﬂ\ 4 LY L £
—>
0 el 250 -“%_|
L 2 v v v v

Foulants deposited on the spacer showing dead zones and first accumulation
of foulants

Ref. Vrouwenvelder et al., (2014) ”

Proposed spacer design for fouling control

Standard spacer Perforated spacer

IFIow direction

. . . » Perforations can provide micro-jets inside the
Space.r orientation, internal Sta'?d angle, filament cell producing high shear stress
etc to improve the hydrodynamics to > It can sweep away and avoid foulants to
decrease fouling and CP deposit
» Increase the feed channel porosity which
Patent WO 2017/175137 A1 (2017) helps reducing AP -
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1-Hole Spacer 0-Hole Spacer

2-Hole Spacer

3-Hole Spacer

. 3D-Printed
Patent WO 2017/175137 A1 (2017) Water RoS8areh 140 20187 ST .

Seawater,
Yeast Extract,

Alginic acid sodium O

‘ Pump
N—

F.ee_d Pressure
--------- differential
~— transmitter

®

LT, |_|| Flow cell_|—p —1

Data

» Optical Coherence Tomography (OCT)
» Direct Numerical Simulation (DNS)
» KAUST Supercomputer facilty
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Performance under constant pressure
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OCT scans for fouling taken after 40h filtration

Standard spacer Perforated spacer

B

2D-0CT imaging after ﬂ
filtration process

No-Fouling

" "Membrane|
\

-Hole I 1-Hole
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OCT scans for fouling taken after 40h filtration

Membrane Active

159 pm

1-Hole

=
100 fm

Water Research 140 (2018) 211-219

Performance under constant feed flow
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OCT scans for fouling taken after 40h filtration
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Hydraulic resistance
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High flux and cleaner surface

The decrease in AP appears more
significant when the number of holes is
the spacer filaments is increased. Due
to the increase in channel porosity.

Percentage reduction of feed pressure
drop relative to 0-Hole at various
velocity rates.
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(b) 1-Hole Spacer
)
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(d) 3-Hole Spacer

¥ (c) 2-Hole Spacer
Non-Dimensional velocity magnitude for different spacers at central plane of the feed
channel from DNS calculation using more than 1 spacer cell.

When the hole was introduced more turbulent intensity was
observed, but it decreases by increasing the number of holes.

31

Fluid flow behavior under different states

Smaller

Dead Zones
. Dead Zones

Steady Streamlines

(a) Steady State with Turbulent State with Turbulent State with
Standards, (k) @
tandard Spacer Standard Spacer Perforated Spacer

Turbulent state in presence

Steady flow conditions Turbulent condition
of perforated spacer

» The intersection of filaments obstructs the flow, hence exposed to low velocities.

» Dead-zones or recirculation vortex have been created enabling foulants deposition.

» By default, perforated spacer overcomes this hurdle by eliminating the dead zones.

» Higher velocities lead to perturbation of the dead zones, hence pass to unsteady regime.

32
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Non-dimensional shear stress contours
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(a) 0-Hole Spacer (b) 1-Hole Spacer
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(c) 2-Hole Spacer (d) 3-Hole Spacer

» Perforations in the interconnection of spacer filaments create micro-jets
offering higher turbulence
» Better mixing at lower energy

Water Research 140 (2018) 211-219 .

Perforated spacers illustration

I Standard Spacer I Perforated Spacer
Unsteady micojets

—— Dead zones

Turbulnt eddies 4 More urhulent
potucin — A / despodcion — £ 4

Plan view

Unsfeady
micojels

SaconAA fulg S

Turbulent eddies - Membrare More tubulent eddies — \— Unsteady miciojels

lllustration prepared by Mr. Xavier Pita, KAUST illustration team. Water Research 140 (2018) 211-219 34
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Conclusion

» Perforated spacers could increase the flux by 75% (1-H) and reduce AP by 15%. AP
could be further improved to 54% with more perforations (3-H) but at the expense

of flux reduction (17%).

» Perforations created micro-jets inside the filament cell, which not only eliminated
the dead zones but also aided in redistributing/diffusing the shear stress to

minimize foulants attachment.

» Simulations indicated that increasing the number of perforations also reduces the
fluid unsteadiness which result in fouling formation on the membrane (layer is

much thinner compared to the standard spacer).

35

Please find more details in:
S. Kerdi, A. Qamar, J.S. Viouwenvelder, N. Ghaffour, Fouling resilient perforated
feed spacers for membrane filtration, Water Research 140 (2018) 211-219.

Thank You

noreddine.ghaffour@kaust.edu.sa
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