

UNDER THE PATRONAGE OF THE EGYPTIAN PRIME MINISTER

11TH WATER DESALINATION CONFERENCE IN THE ARAB COUNTRIES UNDER THE THEME: NATIONALIZATION OF DESALINATION INDUSTRY IN THE ARAB WORLD

18-19 April 2017

INTERCONTINENTAL CITY STARS - CAIRO - ARAB REPUBLIC OF EGYPT

Optimum operation policy of Jeddah RO desalination plant under production pumps failure

سياسة التشغيل الأمثل لمحطة جدة لتحلية المياه بالتناضح العكسي تحت إخفاق مضخات الإنتاج

Dr. Khaled Balkhair

Center of Excellence in Desalination Technology King Abdulaziz University, Saudi Arabia

Content

- OVERVIEW
- JEDDAH RO PLANT
- PROBLEM STATEMENT
- **OBJECTIVE**
- SOLUTION TECHNIQUE
- RESULTS & ANALYSIS
- CONCLUSIONS

Desalination Projects in Saudi Arabia

Design Water Exports and Installed Capacity of SWCC Plants

Plant	Phase	Design Export(m ³)	Installed Capacity(m ³)		
Ras Al Khair*	RO	264.450	307.500		
	1	118.447	137.729		
Jubail	2	815.185	947.890		
	RO1	78.182	90.909		
	Total of Jubail	1.011.814	1.176.528		
	2	191.780	223.000		
Khobar	3	240.800	280.000		
	Total of Khobar	432.580	503.000		
Khafji	1	19.682	22.886		
Total Eastern	n Coast	1.728.526	2.009.914		
	4	190.555	221.575		
	RO1	48.848	56.800		
Jeddah	RO2	48.848	56.800		
	RO3	206.400	240.000		
	Total of Jeddah	494.651	575.175		
	1	191.780	223.000		
Shuaiba	2	390.909	454.545		
	Total of Shuaiba	582.689	677.545		
	1	94.625	108.074		
	2	120.096	144.000		
Yanbu	RO1	106.904	128.182		
	Expansion	58.643	68.190		
	Total of Yandu	380.268	448.446		
Shuqaiq	1	83.432	97.014		

The Actual Desalinated Water Exports from the Western Coast

Jeddah water strategic storage

No. of reservoirs = 11

Capacity = 188000 m³/Res.

Total > 2 x 10⁶ m³

Jeddah RO Plant

Operation : since 1988.

Number : Three RO Stations. One MSF Station.

Production: 15 MGD / Station.

Type of membrane : hollow fine fiber .

Bar Screen

Travelling Screen

Sea Water Pumps

Dual Media Filter

Filter Clear Well Pumps

Micron Cartridge Filter

High Pressure Pumps

Reverse Osmosis Trains

Product Pump

INPUT FLOW TO PRODUCT TANK

- 1- H.P. Pumps : $10 \text{ PUMPS} 676 \text{ m}^3/\text{H}$ 2- NO. of trains : 10.
- 3- Feed pressure : 60 kg/cm².g
- 4- Design feed flow per train : 676 m³/h
- 5- Design product flow per train : 236 m³/h
- 6- Design recovery: 35%
- 7- Design flow of brine reject : 440 m³/h

PRODUCT TANK

PRODUCT WATER

Back flow tank : 300 m³
Product tank : 700 m³
Product pumps :
4- Capacity : 1193 m³/h .

MODIFICATION FOR RO TRINS(2008)

ITEMS	BEFORE	AFTER
PRODUCT PUMPS	TWO I/S-ONE S/B	THREE I/S-NO S/B
Input Pressure to Membrane	60 KG/CM ² .G	70 KG/CM ² .G
Output Product flow from Membrane	236 M³/H	270 M³/H
Recovery	35 %	40 %
Brine flow	440 m³/H	410 M ³ /H

PROBLEMS :

- 1 Imbalance between input and output (PRODUCT TANK).
- 2 Overflow from the reservoir during shutdown of any pump.

Development of cost-effective operation policy for Jeddah RO desalination plant under production pump failure using mathematical optimization approach.

Defects or failure are common ...

Malik, A. U., Mobin, M., Andijani, I. N., Al-Fozan, S., & Al-Hamed, A. (2006). Investigations on the corrosion of flash chamber floor plates in a multistage flash desalination plant. *Journal of Failure Analysis and Prevention*, 6(6), 19-24.

Malik, A. U., Al-Fozan, S. A., Al-Muaili, F., & Al-Hajri, M. (2013). Frequent Failures of Motor Shaft in Seawater Desalination Plant: Some Case Studies. Journal of failure analysis and prevention, 13(2), 144-152.

Malik, A., Meroufel, A., & Al-Fozan, S. (2015). **Boiler Tubes Failures: A Compendium of Case Studies**. *Journal of Failure Analysis and Prevention*, *15*(2), 246-250.

Problem definition

Permeat input Q_{in} flows into a balance tank that works as a sump to a pumping system consisting of a number of pumps. Pumps discharges water to the city. Due to failure of any of the pumps, tank over flow Q_{over} is wasted back to the sea.

Target solution

Ensure continuous city target supply and stop or minimize overflow under the circumstances of production pump failure.

Problem formulation

Cost-effective operation policy that ensures continuous production during the failure of any production pump.

Mathematical representation

Optimization model

$$Min Z = \sum_{i=1}^{N} C_i P_i + C_j T_j + M_i P_i$$

Subject to:

 $\sum_{i=1}^{N} Q_i P_i \ge Q_t$ $Q_{in} - Q_{out} \le V_j T_j$ $T_j \ge 1$ $P_i, T_i \ge 0$

C_{i =} Unit capital cost of pump i;

P_i = No. of pump i;

 T_{j} No. of tank j;

M_i = Unit cost of power consumption plus maintenance cost; C_j = Unit cost of tank j; **Q**_t = Target flow per unit time; **Q**_{in} = Inlet flow per unit time; **Q**_{out} = Outlet flow per unit time; **Q**_i= Pump i production rate; V_i = Volume of tank j.

Solution technique

Mixed-integer programming

An **integer programming** problem is a mathematical optimization or feasibility **program** in which some or all of the variables are restricted to be **integers**

The most widely used method for solving integer programs is branch and bound.

Sub-problems are created by restricting the range of the integer variables.

commercial and noncommercial packages to solve mixed-integer linear programming (MILP) are available.

Examples: POM-QM, ABACUS, BCP, LINDO, BonsaiG, CBC.

Objective function parameters

- 1) capital cost of pump.
- 2) cost of maintenance and power.
- 3) cost of Tank.

Capital and total cost of pumps (P_i) and product tank (T_i) available in the local market

Notation variable of pump (P _i)	Discharge capacity (m³/hr)	Capital cost (SR)	Total cost (SR)	2,500,000
P ₁	2500	525,000	2,188,000	2,000,000 - Total cost
P ₂	2000	475,000	1,804,000	<u>•</u> -
P ₃	1500	435,000	1,431,000	2 1,500,000 -
P ₄	1200	375,000	1,171,000	Saud
P ₅	1000	325,000	989,000	도 1,000,000 -
P ₆	600	225,000	624,000	° - and
P ₇	360	100,000	333,500	500,000 -
P ₈	260	70,000	237,000	- sagan and a second
P۹	200	50,000	183,500	
T ₁	1000 (m³)	340,000		0 500 1000 1500 2000 2500 Pump capacity (m ³ /hr)

Plug in numbers ...

• Min z = $525000P_1 + 475000P_2 + 435000P_3 + 375000P_4 + 325000P_5 + 225000P_6 + 100000P_7 + 70000P_8 + 50000P_9 + 340000T_1$

S.T

- $2500P_1 + 2000P_2 + 1500P_3 + 1200P_4 + 1000P_5 + 600P_6 + 360P_7 + 260P_8 + 200P_9 \ge 2700$
- $2500P_1 + 2000P_2 + 1500P_3 + 1200P_4 + 1000P_5 + 600P_6 + 360P_7 + 260P_8 + 200P_9 1000 T_1 \le 2700$
- T₁ ≥ 1
- P_1 , P_2 , P_3 , P_4 , P_5 , P_6 , P_7 , P_8 , $P_9 \ge 0$

Results

Solution summary of the optimization problem under operation and failure of pumps with and without power and maintenance costs consideration

Pumps	Solution type	No. of feasible Solutions	No. of pumps	O.F. value x 10 ³ (RS)	Production rate (m ³ /hr)						
Operating	Operating pumps No maintenance costs										
D	I	1	2	915	2700						
F 1	NI	2	1.08 - 1.1	907 - 913	2700						
Ρ.		10	2 - 8	2700 - 3000	2700						
• 4	NI	142	1.6 - 9	1030 - 1440	2700						
		Operating p	umps with mainten	ance costs							
Ρ.		1	2	2712	2700						
• 1	NI	4	1.08 - 2	2703 - 2765	2700						
D.		1	6	2880	2700						
Г4	NI	6	1.6 - 7	2824 - 3699	2700						
Failure											
Ρ.		16	2 - 14	1440 - 1915	2700 - 5000						
	NI	37	2.04 – 8.22	1411 – 1839.25	2520 - 2610						
Ρ.		16	2 - 14	1290 - 1765	2700 - 5000						
14	NI	37	2.04 - 8.22	1261 - 1689.25	2520 - 2610						
		47	2 - 14	4882.5 - 6904	2400 - 5000						
P ₁	NI	83	2.04 - 8.22	4803.52 – 5787. 5	2280 – 2600.5						
		47	2 - 14	3865.5 - 5887	2400 - 5000						
P ₄	NI	83	2.04 - 8.22	3786.52 - 4770. 5	2280 - 2600.5						

Solution spaces under the operation of P₁

Solution type	No.
Integer	1
Non-integer	2

P ₁	P ₂	P ₃	P ₄	P ₅	P ₆	P ₇	P ₈	P ₉	T ₁	Production (m ³ /hr)	Value of O.F. x 10 ³ (SR)
1	0	0	0	0	0	0	0	1	1	2700	915
1.08	0	0	0	0	0	0	0	0	1	2700	907
1	0.1	0	0	0	0	0	0	0	1	2700	913

1.08 pumps of $P_1 \approx$ one pump with production rate of 2700 (m³/hr)

0.6 pumps of $P_2 \approx$ one pump with production rate of 200 (m³/hr)

Pump	Cost (SR)
0.6 x P ₂	47,500
P ₉	50,000

Solution spaces under the operation of P₄

Solution type	No.	
Infeasible	16	
Integer	10	10 < 1 105 x 10 ⁶ SE
Non-integer	142	₩ 87 > 1.15 x 10 ⁶ SF

P ₁	P ₂	P ₃	P ₄	P₅	P ₆	P ₇	P ₈	P 9	T ₁	Production (m ³ /hr)	Value of O.F. x 10 ³ (SR)
0	0	0	1	0	0	0	2	5	1	2720	1105
0	0	0	1	0	0	2	0	4	1	2720	1115
0	0	0	1	0	0	1	0	6	1	2760	1115
0	0	0	1	0	0	0	5	1	1	2700	1115
0	0	1	1	0	0	0	0	0	1	2700	1150
0	0	0	1	0	1	0	0	5	1	2800	1190
0	0	0	1	1	0	0	0	3	1	2800	1190
0	0	0	2	0	0	0	0	2	1	2800	1190
0	0	0	1	0	2	0	0	2	1	2800	1265
0	0	0	1	0	3	0	0	0	1	3000	1390

Solution spaces

Solution space under the failure of pump P_1 with no consideration of power and maintenance costs.

Solution space under the failure of pump P_1 with the consideration of power and maintenance costs.

Solution spaces

Solution space under the failure of pump P4 without the consideration of power and maintenance costs.

Solution space under the failure of pump P4 with the consideration of power and maintenance costs.

Solution spaces

Optimal solutions

POM-QM solves for all feasible, non-feasible, integer, and non-integer solutions

Optimal solutions under normal operating conditions

			No maintenance cost											
Operating pump		P ₁	P ₂	P ₃	P4	P ₅	P ₆	P ₇	P ₈	P ₉	Value of O.F. x 10 ³ (SR)			
Integor	P ₁	1	0	0	0	0	0	0	0	1	915			
Integer	P ₄	0	0	1	1	0	0	0	0	0	1150			
	P ₁	1.08	0	0	0	0	0	0	0	0	907			
INI	P ₄	0.6	0	0	1	0	0	0	0	0	1030			
Opera pur	ating np				N	lainte	nance	cost i	nclude	ed				
Intogor	P ₁	1	0	0	0	0	0	0	0	1	2712			
meger	P ₄	0	1	0	1	0	0	0	0	0	3315			
	P ₁	1.08	0	0	0	0	0	0	0	0	2703			
NI	P ₄	0.6	0	0	1	0	0	0	0	0	2824			

Optimal solutions under pump failure conditions

Pump	Solution		No.	of p	oum	Production	Value of							
failure	type	P ₁	P ₂	P ₃	P ₄	P ₅	P ₆	P ₇	P ₈	P ₉	rate (m³/hr)	O.F. x 10 ³ (SR)		
Power and maintenance costs excluded														
P ₁	I	2	0	0	0	0	0	0	0		2700	1440		
	NI	2.04	0	0	0	0	0	0	0	0	2600	1411		
P ₄	I		0	0		0	0	0	0 (2700	1290		
	NI	1.04	0	0	1	0	0	0	0	0	2600	1261		
		Powe	er an	d m	ainte	ena	nce	cos	ts in	clud	led			
P ₁	I			0	0	0	0	0	0	3	2600	4882.5		
	NI	2.04	0	0	0	0	0	0	0	0	2600	4803.52		
P ₄	I	0		0		0	0	0	0	3	2600	3865.5		
	NI	1.04	0	0	1	0	0	0	0	0	2600	3786.52		

Conclusions

- Mathematical programming proved to be a powerful technique not only in finding an optimal solution for a minimization problem, but also in generating a nearly optimal feasible solution of best operation policy for Jeddah RO desalination plant.
- Cost-effective operation policy has been developed under scenario of normal operation and failure of pumps.
- Inclusion and exclusion of power and maintenance costs produced two different optimal solutions indicating a sensitivity of the operation strategy to the capital and total costs.
- The non-integer number of pumps may be viewed as an integer number with an equivalent production rate that can be customized and manufactured to empower an additional 12–26% reduction in the costs.
- Besides the saving of operation and maintenance costs, the obtained solutions can be adopted to save huge quantities of water production from wasting into the sea.

