

مؤتمر تحلية المياه الحادي عشر في البلدان العربية UNDER THE PATRONAGE OF THE EGYPTIAN PRIME MINISTER ENGINEER SHERIF ISMAIL 11TH WATER DISALINATION CONFERENCE IN THE ARAB COUNTRIES

تحت رعاية معالي رئيس مجلس الوزراء المصري المهندس شريف إسماعيل

18-19 APRIL 2017 • INTERCONTINENTAL CITY STARS - CAIRO - EGYPT

A Solar-Based Thermo-Electric Saline Water Desalination Device for Drinking Needs: A Numerical Study

Mohammed Abdulaziz, Ph.D.

University of Duisburg-Essen - Germany

ALMiG Compressor Systems - Germany

Emad Elsaid, *Ph.D.* Fayoum University - Egypt

- Introduction
- Concept
- Application
- Results
- Conclusions
- Future Work

- Introduction
- Concept
- Application
- Results
- Conclusions
- Future Work

Outlines

Water Resources and Needs

Source: http://www.fao.org

Water Resources and Needs

Much more water required to produce food

The daily drinking water requirement per person is 2-4 litres, but it takes 2,000 to 5,000 litres of water to produce one person's daily food.

Source: http://www.fao.org

Substantially more water required for meat

Producing 1 kg of grain requires approximately 1,500 litres of water while 1 kg of beef requires 15,000 litres.

Water Resources and Needs

Source: http://www.fao.org

Water Resources and Needs

In 2030, 47% of world population will be living in areas of high water stress

http://www.fao.org

Water Crisis in Arab Countries

Areas of physical and economic water scarcity

Source: International Water Management Institute (IWMI). Water for Food, Water for Life: A Comprehensive Assessment of Water Management in Agriculture; Earthscan: London, UK, 2007.

Five countries (Saudi Arabia, USA, UAE, Spain and Kuwait) share more than 60% of the world production capacity of desalinated water

Source: The current state of desalination, International Desalination Association and Global Water Intelligence Desal Data service V03. 2010.

Solar Energy in Arab Countries

Arab countries have abundant sunshine throughout the whole year; the sun in Arab countries emits about 7 kW/hr/m²/day. Since, the economical production of solar electricity requires radiation of 4-5 kW/hr/m²/day.

Methodology

Outlines

- Introduction
- Concept
- Application
- Results
- Conclusions
- Future Work

Thermo-electric Water Generator System for Wet Areas

Thermo-electric Water Generator System for Wet Areas

International Journal of Ambient Energy > Volume 37, 2016 - Issue 1

Articles

Solar-based atmospheric water generator utilisation of a fresh water recovery: A numerical study

- Introduction
- Concept
- Application
- Results
- Conclusions
- Future Work

Application

Thermo-electric Water Generator System for Dry Areas

Thermo-electric Water Generator System for Dry Areas

Humidifiction System

Thermo-electric Water Generator System for Dry Areas

Humidifiction System

Applied Thermal Engineering

Volume 111, 25 January 2017, Pages 455-476

Research Paper

Enhancement of heat and mass transfer performance on humidification tower using injection of different carrier gases into water bed

- Introduction
- Concept
- Application
- Results
- Conclusions
- Future Work

Results

Parameter	Test case set		
	Case 1	Case 2	Case 3
Temperature of inlet air, T (°C)	35	30	27
Temperature of water bed, T (°C)	27	27	27
Air velocity, u (m/s)	0.006	0.008	0.007
Relative humidity of inlet air, Φ (%)	5	10	15
Solar radiation, S (W/m ²)	250	300	350

Temperature variation of flow field at t = 1.5 sec.

Results

Density distribution of flow field at t = 1.5 sec.

Case 2

Case 3

- Introduction
- Concept
- Application
- Results

Conclusions

• Future Work

Conclusions

- A new and simple design method was proposed and numerically simulated under three different climate conditions.
- The pressure drop equals around 150 Pa, for which the pumping power of air fan did not exceed 10.5 W.
- Fresh water productivity of the proposed system was up to 4.1 L/h/ m².
- The proposed system is simple, low-cost and low-maintenance product compared with predictive productivity.

- Introduction
- Concept
- Application
- Results
- Conclusions
- Future Work

Future Work

Experimental investigation under actual conditions

Operation limits optimizations

Thanks for Your Attention!

Mohammed Abdulaziz

mohammed.abdulaziz@stud.uni-due.de +49 176 5545 8664

Emad Elsaid

<u>emadsaad@fayoum.edu.eg</u> +20 1000 53 0293 UNIVERSITÄT DUISBURG ESSEN

Offen im Denken

